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Chapter 1 The Physics of Proton Precession and Sensor Geometry 

A few words about units 
 

When I was a student in physics in the 1950’s, the usage of units was confused to say 
the least.  Most sub-branches of physics seemed to adopt a set of units which were 
convenient for that field (and they still do to some extent!) and, as they used to say in 
Rome, scabes extremum occupet, ‘May the itch catch the hindmost’.  Physics was made 
even more difficult than it needed to be by the necessity to convert between cgs units, 
mks units, esu (electrostatic units) and emu (electromagnetic units) not to mention the 
continual frustration brought on by the additional occurrence of British units (lb-ft-sec).  
Indeed, looking back on it now, it seems to me that most of the problem sets assigned to 
us by the prof’s were concerned with converting all the disparate units into one self-
consistent set appropriate to the problem!  By the time I was teaching physics in the mid 
1960’s some sanity had come to the field and most textbooks, at least, were being written 
with a consistent set of units, most frequently the SI (Systéme International) set of units. 
However the usage in magnetic units has retained some of the confusion that used to be 
widespread in all other topics.  The situation is better (much better!) but still not perfect. 
 

Part of the problem is that there is still some controversy about which is the more 
fundamental property of magnetism – is it the ‘magnetic field’, commonly designated by 
the symbol, H,  or is it the ‘magnetic induction’ or ‘magnetic flux density’ commonly 
designated by the symbol, B?  The two are related, in any material by the equation: 

where µ is the ‘permeability’ of the material.  In a vacuum or ‘free space’, the 
permeability is defined as µ0 which is called the ‘permeability of free space’ and has a 
value of precisely 4π × 10-7 in SI units.  I will not contribute to the discussion except to 
say that I have a slight preference for B rather than H and I will tend to use it in the 
discussion that follows unless I am referring to materials by other authors who have 
chosen to use the other. 

The unit of B in the SI system is the Tesla; named after the famous/infamous (take 
your pick) Serbian scientist/charlatan (take your pick) Nikola Tesla.  The earth’s 
magnetic field has a value of about 50 microTeslas (5×10-5 T) but varies from location to 
location over the surface of the earth being (in general) strongest near the magnetic poles 
and weakest near the magnetic equator.  It is a vector which means that it has direction as 
well as magnitude.  The convention is that B, at any location, points in the direction that 
the north-seeking pole of a freely suspended magnet would point if suspended in that 
location.  That means that in the northern magnetic hemisphere of the earth, the local 
magnetic induction, B, points downwards and towards the north magnetic pole of the 
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earth.  In common with most workers in the field, I carelessly often call B the ‘magnetic 
field’ even though the precise term should be the magnetic induction. 
 

The physics of proton precession 
 

The proton has both angular momentum and a magnetic moment.  Having angular 
momentum means that  one can think of it as having some ’spin’ like a little top.  The 
angular momentum is truly very small – just 5.27×10-35 kg-m2/s 

The magnetic moment means that it behaves like a small (very small!) magnet.  It has 
a magnetic moment of 1.41×10-26 A-m2.   The direction of the angular momentum and the 
magnetic moment is identical – they are parallel to one another.  In one of those minor 
misfortunes in physics, the same symbol, µ, (note the bold, italics here) is used for the 
magnetic moment of the proton as is used for permeability.  There just aren’t enough 
Greek letters to uniquely define everything, I guess.  However, remember that the 
proton’s magnetic moment has both magnitude and direction – it is a vector – while 
permeability is just a scalar constant. 

Because the angular momentum, L, and the magnetic moment, µ, are vectors which 
point in the same direction, they are related to each other by a constant, γp, in the 
equation: 

µ = γpL 
 
γp is called the gyromagnetic ratio and has a value of 2.67512×108 in SI units.  γp is one of 
the fundamental constants of physics. 
 

If a proton is placed in an external magnetic field, B, because of it’s own magnetic 
moment, it will experience a magnetic torque.  Because it also has angular momentum, 
this magnetic torque will cause it to  precess – this is called ‘Larmor precession’ and the 
rate of precession depends on the magnitude of the external magnetic field.  It turns out 
that the rate of Larmor precession is independent of the proton’s orientation with 
respect to the external field and depends only on the magnitude of the external field.  
The rate of precession, ω, in radians per second,  is given by the Larmor Equation: 

 
ω = γpB 

 

where B is the magnitude of the external magnetic field.  A derivation of the Larmor 
Equation is given in Appendix A for those interested. 

For B = 50 µT (a nominal value for the earth’s field), ω is therefore 1.34×104 
radians/second which (divide by 2π) corresponds to 2130 Hz.  The basis of the proton 
precession magnetometer is to make an instrument to measure the precession frequency 
and then, using the Larmor Equation, calculate the magnetic field strength.  To do so, the 
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previous equation may be rearranged to give the magnetic induction, in nT, in terms of 
the precession frequency: 

B=23.4875f 

where f is the frequency is in Hz.  From this equation, one may get some idea of the 
precision required in the measurement of the Larmor frequency; one nT change in the 
magnetic field just causes a change of 1/23.4875 Hz.  In other words, to measure the local 
magnetic induction to an accuracy of one nT, you must measure frequency with an 
accuracy of 0.0426 Hz! 

In bygone years, for many branches of physics and geophysics, the cgs unit of 
magnetic induction was used; the Gauss. Commonly, in geophysics, an even smaller 
subunit, the “gamma” was used.  One gamma was 10-5 Gauss.  Expressed in the SI 
system of units, one gamma is exactly equal to one nT.
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The proton precession magnetometer 
 

There are protons in the nucleus of all atoms but there is only one atom that has a 
single proton and that is hydrogen.  So it is hydrogen atoms which supply the protons 
necessary for a proton precession magnetometer.  Other elements do not count. 

If all protons will precess in the presence of an external magnetic field, why can’t we 
just put several loops of wire around a cup of water (or any other material containing 
hydrogen atoms) and measure the frequency of the ac voltage induced in the wire by all 
these little magnets precessing?  The answer is that the protons, at room temperature, are 
all lined up in random directions. Therefore there will be as many turning in such a 
direction as to induce a positive voltage in the coil as there are in the opposite direction 
which will induce a negative voltage in the coil.  In another words, because they are not 
all precessing in phase, the net induced voltage will be zero. 

 To make a magnetometer using proton precession, the protons must be 
‘magnetized’ (i.e., lined up in the same direction) and then all ‘let go’ as quickly as 
possible.  They will then all precess in phase and induce a voltage at the Larmor 
frequency which can be measured and used to calculate the ambient magnetic field. 

Typically, the protons are subjected to a polarizing magnetic field which will line 
them up in its direction.  Then the polarizing field will be turned off and the induced 
voltage detected.  The simplest (but not necessarily the best!) configuration is a multi-
turn solenoid containing a core of some substance which is rich in protons – distilled 
water is commonly used.  A large current is passed through the solenoid to generate a 
large magnetic field in the core in order to line up the protons.  The current is then 
switched off and the same solenoid acts as a sensor and is connected to a sensitive 
amplifier in order to detect the induced precession frequency.  Typically, the induced 
voltage due to proton precession is of the order of microVolts.  Because the precession of 
the protons will subsequently be randomized by thermal collisions, the induced signal 
decays exponentially with time and has a typical time constant, which depends on the 
particular proton rich substance used in the core, of a few seconds.  The process is 
repeated to make another reading. 

Since the polarizing current may be of the order of Amperes and since the polarizing 
field must be turned on long enough to ‘line up’ the protons (this is also exponential and, 
typically, also has a time constant of a few seconds), the energy required for each 
measurement may be significant.  This is no problem if sufficient electrical energy is 
available (in a vehicle, for example) but may be a limiting factor for back-pack battery 
operated prospecting equipment in the field. 



 

 

6

6

Is a solenoid the best configuration? 
 

Most amateur PPM’s1 (proton precession magnetometers) have been solenoidal.  This 
configuration has one great advantage and several great disadvantages.  The advantage is 
that it very easy to wind a solenoid.  The first disadvantage is that it is sensitive to 
external ac magnetic fields of which the most troublesome is the very large 50 or 60 Hz 
field over the surface of the earth.  These will induce voltages which may be much, much 
greater than the desired proton precession voltage.  Secondly, the sensor is orientation 
sensitive.  If the polarizing field (along the axis of the solenoid) happens to be in the same 
direction as the external field which it is desired to measure, the induced precession 
voltage will be zero!  This means that the user must always be sure that the solenoid is 
oriented correctly in order to get a sufficient induced voltage to measure.  This may be a 
problem in magnetometers which are towed behind boats, for example, while turns are 
being made.  The sensitivity of the instrument depends on orientation with respect to the 
earth’s field.  The induced signal strength is proportional to the sine of the angle between 
the earth’s magnetic field and the axis of the solenoid. 

Most ‘professional’ PPM’s2 are made using a toroidal core.  A toroidal coil is not 
very sensitive to external ac ‘noise’ magnetic fields and so this reduces external noise 
greatly.  Secondly, the toroidal configuration is not nearly as orientation sensitive.  If the 
external magnetic field it is desired to measure is oriented in the least sensitive direction 
(in the plane of the toroid), the induced voltage is only reduced to one half of  that in the 
most sensitive orientation (where the external field is aligned along the axis of the 
toroid).  The signal never goes to zero and the worst case signal-to-noise ratio is still half 
that of the best.  The only disadvantage of the toroid is that winding it is very labour 
intensive and difficult. 

The first disadvantage of the solenoid, its sensitivity to external ac magnetic ‘noise’ 
fields, can be ameliorated by making a double solenoid, with one winding in the opposite 
direction to the first.  If they are very close together (but not too close!), the induced 
voltages due to external ac noise will be greatly reduced.  However, the orientation 
problem still exists. 

Finally, a toroid may be easily shielded electrostatically because the magnetic field is 
totally inside the winding.  Therefore, a close fitting metal shield may be placed around 
the toroid.  A metal shield may also be placed around a solenoidal coil but, in order to 
prevent it from acting as a shorted turn, it must be very much larger than the outside 
diameter of the solenoidal coil.  This may be inconveniently large. 

                                                 
1 See, for example, The Amateur Scientist column, Scientific American, February, 1968 for a design 
which has been the basis of many later designs 
2 F. Primdahl, Scalar Magnetometers for Space Applications, “Measurement Techniques in Space 
Plasmas: Fields, Geophys. Monograph 103, American Geophysical Union, 1998 – has many useful 
references.  The paper is a useful summary of all the techniques for measurement of B in spacecraft – an 
environment where power and size are constrained.  Therefore this summary is useful for those who are 
interested in portable instruments where, in general, the same constraints exist. 
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Since you only have to wind the core once while you use it many times, it seems to 
me that the extra work in making a toroidal PPM is more than repaid by its advantages – 
in my opinion, the toroidal configuration ought to be first choice. 

 

Signal strength calculation 
 

I am a physicist and so I am interested in understanding exactly how the PPM works. 
I am therefore going to derive a simplified signal strength calculation using a model 
which is physically intuitive and instructive but which contains some approximations. I 
am indebted to Dr. Fritz Primdahl for giving me a copy of his lecture notes for a 
presentation at the Danish Space Research Institute, 17 November, 1987.  This derivation 
is based on these notes. There are more rigorous calculations which I will describe in a 
later section which, although mathematically correct, are much less illuminating. 

Consider a sample of a proton rich substance in the presence of a polarizing field of 
magnitude Bp.  The magnetic energy of a proton in this field will be µBp  which is a 
scalar quantity.  Here, µ is the magnitude of the magnetic moment of the proton.  The 
thermal energy of the proton will be ~kT where k is Boltzmann’s constant (1.38×10-23) 
and T is the temperature of the fluid in Kelvins.  Typically, µBp will be many orders of 
magnitude smaller than kT which means that the thermal agitation of the protons prevents 
them from being completely aligned.  For a typical PPM, a typical value of the ratio of 
the polarizing magnetic energy to thermal energy might be ~10-7 so the fluid is only very 
slightly magnetized.  One can think of this partial magnetization in one of two ways – 
either each and every proton is only partially magnetized by this amount or that this 
fraction of the protons is completely magnetized and the remainder are completely 
random.  The latter way of thinking is convenient in the analysis that follows.  Please 
note, however, that there is an approximation here. 

Let us now calculate the total ‘magnetization’ of the fluid.  Let the density of the fluid 
be d kg/m3.  Let the molecular weight of the fluid be w amu where each amu is equal to 
1.67×10-27 kg.  Let there be m hydrogen atoms in each molecule.  Then the number, N, of 
protons per cubic meter of the fluid is: 

 

Putting in the appropriate numbers for water (d = 1000, w = 18, m = 2) for example, 
gives an N of 6.65×1028 protons per cubic meter.  If all the protons were perfectly aligned 
with one another, the total ‘magnetization’ (magnetic moment) would be Nµ.  However, 
because only the fraction, 

w1067.1
mdN 27−×

=

kT
Bpµ
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is aligned, the total magnetization, M, will be approximately (see caveat above): 

M is in units of A-m2 per cubic meter or A/m. 

Now, let us consider that this fluid is inside a toroidal form which is wound with n 
turns of wire.  This coil is used to generate the polarizing field and also to sense the 
induced voltage due to all the protons as they precess. The central polarizing field will be 
generated by a polarizing current passed through the winding.   

 

For a toroidal coil, the central magnetic field strength is related to the current by the 
equation given below where Ip is the polarizing current, n is the number of turn and R is 
the central radius of the toroid.  

 

The net magnetization in the fluid is then given by this value of polarizing field, Bp , 
substituted into the equation for M.  M will be aligned along the central core of the toroid 
as shown in the figure.  Note that the above equation is an approximation.  The magnetic 
induction inside a toroidal core varies with the radius so the above approximation is 
valid, as an average value, provided that r is much, much smaller than R.  In the figure of 
the toroid, the usual convention is followed in showing the direction of the current in the 
windings by a point if it is coming out of the paper and by a cross if it is going into the 
paper. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛µ
µ≈

kT
B

NM p

R2
nI

B p
0p π

µ≅
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Let us now suppose that the external field which we wish to measure is directed along 
the axis of the toroid (imagine the toroid as a wheel – then the axis is in the direction of 
the wheel axle).  Then, when the polarizing field is switched off, all the aligned protons 
will precess about this axis and each one will generate a tiny voltage in the winding 
according to Faraday’s Law.  The amplitude of the precessing magnetic moment per unit 
volume is M at the instant the polarizing field is switched off and so the subsequent axial 
component of M may be written as a function of time: 

        Maxial = M cos(ωt) 

The magnetic field (induction) from this fluctuating magnetic moment is thus: 

       Baxial = µ0 Maxial  = µ0Mcos(ωt) 
 

From Faraday’s Law, the time varying induced voltage is given by: 

where A is the cross-sectional area of each loop of the coil.  Let the radius of the toroid 
core be r, then A = πr2.  The rms (root mean square) amplitude of the induced voltage is 
just the amplitude in the above equation divided by the square root of two.  Therefore, 
making all the appropriate substitutions, the rms output voltage, es, at the Larmor 
frequency will be: 

 

Note that the output voltage depends on the square of the number of turns and on the 
magnitude of the polarizing current.  Also, r should be large compared to R which means 
that a ‘fat’ toroid is better than a ‘thin’ one.  Of course, if the toroid is made too ‘fat’, the 
central hole will be too small to allow many turns of wire. 

 

How bad are the approximations? 
 

One approximation used in the section above was that the average value of the 
magnetic induction inside a toroid due to a current flowing through it was equal to the 
value at the centre of the toroidal core.  It is, in fact stronger at smaller radii and weaker 
at larger radii and the average value is not exactly equal to the value at the centre.  To get 
a proper value, one needs to integrate the elemental values of the magnetic induction over 
the entire core and then calculate the average.  This has been done (see the next section).  
However, the error in the approximation is not too significant as long as r <<R. 

( ) ( )tsinMnA
dt

dBnAte 0
axis ωωµ=−≅

( )
kTR22

InrN
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2
0
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Secondly, in considering the problem of magnetizing the medium, the previous 
section derives an equation relating the total magnetic moment of the medium due to a 
polarizing field and this contained an approximation: 

 

In practice, it is possible to measure the magnetization of a substance experimentally and 
the equation used is: 

M=χH 
 

χ is called the ‘magnetic susceptance’ of the substance and the equation above gives the 
relationship between the resulting magnetization, M, produced by a substance by an 
external magnetic field, H.  For non-ferromagnetic substances, this equation can be 
rewritten: 

 

which means that the following equation should be true: 

 

How far wrong were we in the approximation we made?  χ is a measured quantity 
and the values for a large number of substances (unfortunately in cgs units!) can be found 
in the ‘Handbook of Physics and Chemistry’.  For example, the value for water at 300 
Kelvins is 4.26×10-9 (converted to SI units).  The product of all the numbers on the right 
side of the equation which I derived approximately is 4.02×10-9 – an apparent difference 
of just about 6%.  This is not bad considering the broadness of the approximation!   

However, the close agreement might be too good to be true.  The other atoms in 
any molecule have some susceptance also and so the bulk measurement of the 
sucsceptance of some substance will include those as well.  In the case of water, the other 
atom is oxygen and for other commonly used hydrocarbons, there are carbon atoms as 
well.  Therefore, in conclusion, it is not possible to (easily!) take into account the effect 
of other atoms and so using the measured bulk values of susceptance is, itself, just an 
approximation! 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛µ
µ≈

kT
B

NM p

0µ
χ
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M
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So, given the fact that I derived an equation on physical grounds which I stated were 
just approximate and that the measured values are also not really appropriate, exactly 
what value should one use?  There is a good answer to this question because it is possible 
to correctly evaluate that part of the total magnetic susceptance of a substance that is due 
to the hydrogen atoms (i.e., protons) alone.  This is given by the Curie equation:  

 

where j is the angular momentum of the proton and h is Planck’s constant.  For a proton, j 
happens to be equal to h/4π and so the quantity inside the first set of brackets is exactly 
equal to 1.  Therefore, my ‘approximate’ equation turns out to be exactly correct! 

This means that it is possible to calculate the appropriate value for the magnetic 
susceptance to use in signal strength formulas for any substance provided you know how 
many hydrogen atoms there are in each molecule, the molecular weight of the substance 
and the density of the substance.  The values for some common liquids is given in 
Appendix C. 

A more detailed study of the toroidal configuration 
 

In a paper a number of years ago, Acker3 did a detailed study of the toroidal PPM 
sensor and derived an equation taking into account the variation of magnetic induction 
over the cross-section of the toroid as discussed above.  He also took into account the 
effect of a external magnetic field being in a direction other than the axis of the toroid.  
He also generalized the problem to include toroids with elliptical cross-sections.  This is a 
very sophisticated analysis and includes a section on the cross-sectional shape of the 
windings when the core is so completely wound that the central ‘hole’ is filled with wire.  
For the purposes of this discussion, we shall assume that the toroidal cross-section is 
circular and then just produce his equation for the rms sensor voltage: 

 

This is essentially the same as the equation derived in the section above but with the 
substitution that (R-(R2-r2)1/2) replaces r2/2R.  (It is left as an exercise for the student to 
show that these two terms approach one another when r<<R.)  The other addition is the 
                                                 

3 Acker, F.E., Calculation of the Signal Voltage Induced in a Toroidal Proton-Precession Magnetometer 
Sensor, IEEE Trans. Geosci. Electronics, GE-9, 98-103, 1971 
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quantity, α, which is the angle between the measured magnetic field and the axis of the 
toroid.  In my derivation, α was assumed to be zero.  Since α can vary between zero and 
90 degrees, the quantity in the brackets can vary from 2 to 1 respectively.  This means 
that the weakest sensitivity (when α is 90 degrees) is equal to one-half of the strongest 
signal.  This is a much better situation than in the case of a solenoidal sensor where the 
weakest signal is zero! 

The solenoidal configuration 
 

The solenoidal configuration has been studied by Faini and Svelto4.  The situation is 
more complex, mathematically, because the magnetic field inside a solenoid of finite 
length is not everywhere parallel to the axis of the solenoid.  Calculating the net induced 
voltage requires integration over a geometry which is not simple.  Nevertheless, it is 
possible and they derived the following equation: 

 

where b is the length of the solenoid, Vi is the internal volume of the solenoid (the inside 
cross-sectional area times the length) and α is the angle between the field being measured 
and the axis of the solenoid.  The quantity, η, is called the ‘filling factor’ and depends on 
the geometry of the coil.  It is the calculation of this factor which is mathematically 
complicated.  For an infinitely long solenoid (i.e., in practice, a solenoid that is much, 
much longer than its diameter), the filling factor is unity.  For a short solenoid, it is less 
than unity and has a value which depends on the ratio of the solenoid radius to the 
solenoid  length and which they just show in the form of the graph reproduced below.  

                                                 
4 Faini G. and Svelto O., Signal-to-Noise Considerations in a Nuclear Magnetometer, Suppl. al Vol 23, 
Serie 10 del Nuovo Cimento, 55-65, 1962 
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The abscissa of this graph is the ratio of radius to length for the solenoid. 

          I have made a slight change of notation.  They gave the symbol α to the ratio of 
radius to length; I have changed it to the letter, a, in order to avoid confusion with the 
angle between the solenoid axis and the local magnetic field. 

A cylindrical toroidal configuration 
 
          There is another configuration which is potentially useful for PPM’s designed to be 
towed behind boats.  It is a toroid with rectangular cross-section and of arbitrary length 
and as with the ordinary toroid, the worst-case orientation still gives you a signal of half 
the best-case orientation.  It has the advantage that the length can be made quite long so 
as to increase the quantity of active fluid.  I have not seen this configuration described in 
the literature and so have derived the signal strength below for the case where the local 
magnetic field is along the axis of the cylinder. 
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The magnetization produced by the polarization field inside a toroidal form is: 
 

 
where Bp is the polarization field which is a function of radius.  We have discussed the 
valuation of χ earlier.   Bp is given by: 
 

 
 
where I p is the polarization current and n is the total number of turns.  The total flux 
inside the toroid is given by the integral: 
 

   
where dA is the elemental area in a strip of constant r inside the cylindrical toroid.  Thus 
φ becomes: 

 
  
integrated over r from R+d to R+(a-d).  Putting in the value for Bp, we get: 
 

 
which is evaluated as: 

 

Again, assuming that the precession is sinusoidal, the generated voltage can be shown to 
be: 
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Summary of signal strength calculations 
 

Let us simplify these equations for the toroidal, solenoidal and cylindrical toroidal 
sensors.  Firstly, let’s just calculate the value for the best orientation – where the external 
field which it is desired to measure is along the axis of the toroid and cylindrical toroid or 
perpendicular to the axis of the solenoid.  Then, all the equations can be expressed by a 
single equation: 

 

where κ is a constant and G is a geometric factor which is different for the solenoid, the 
toroid and the cylindrical toroid, n is the number of turns of wire and Ip is the polarizing 
current in Amperes. The constant, κ, which is equal to χωµ0/√2, has a value of 4.87×10-11 
in SI units for water in a location where the external magnetic field is 50 µT.  Its value is 
proportional to the magnetic field strength which the PPM is expected to measure. 

 

where R is the central radius of the toroid (from the central axis to the middle of the 
‘donut’ core) and r is the radius of the cross-section and, 

 

where b is the length of the solenoid, η is the filling factor and VI is the internal volume 
of the solenoid. 

For the cylindrical toroid, the value of G is: 
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where R is the inside radius of the cylinder, a is the thickness of the cylinder (the 
difference between the inside and outside radii), b is the length of the cylinder and d is 
the wall thickness.  Normally, d will be small compared to the other values and, if so, Gc 
becomes simplified to an approximation: 

                   ⎟
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Signal-to-noise considerations 
 

The equations discussed in the previous section give the rms signal output voltage 
one can expect from the sensor.  However, because of its resistance, the sensor will also 
produce an rms random noise voltage which has a magnitude given by: 

 

where Rw is the resistance of the wire used in the sensor and ∆ is the bandwidth of the 
subsequent electronic detection system.  The right hand side of the equation has been 
evaluated for a temperature of 300 Kelvins.  It is the ratio of signal-to-noise that is 
important, not just the magnitude of the signal.  This ratio is just: 

 

and, for the types of sensors discussed here, you just put in the appropriate value for es. 

The wire resistance will depend on the material used to make the wire and its 
dimensions.  Since the wire will almost certainly be made from copper which has a 
resistivity, in SI units, of 1.73×10-8, one may easily calculate the total resistance of the 
coil by: 

where λ is the length of the wire making up the coil and σ is the cross-sectional area of 
the wire.  The length of the wire depends linearly on the number of turns of wire making 
the coil and its diameter.  The cross-sectional area depends on the wire size. 

We may rewrite Rw as: 

 

where rw is the radius of the wire and r is, for the toroid, the radius of the core and, for the 
solenoid, the radius of the solenoid core.  For multi-turn windings, the mean value should 
be used. 
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In addition to this dc resistance, there is the skin effect which has to be taken into 
account.  The skin effect gets its name from the fact that ac currents flowing in a wire do 
not flow with equal density in all parts of the wire’s cross-section.  The higher the 
frequency, the more the current is concentrated near the outside or skin of the wire.  At 
radio frequencies, this effect is very pronounced and the actual resistance of a wire at 
these frequencies is much, much greater than its dc resistance.  At the low frequencies of 
the proton precession signal due to the earth’s magnetic field (about 2 kHz), the effect is 
small but not negligible.  Faini and Svelto (ibid.) found that, at 2 kHz,  the actual 
resistance of one experimental solenoid was about 20% greater than the dc resistance.  
This factor, although just the value for that particular solenoidal coil, is probably a 
reasonable estimate for the kinds of coils likely to be wound for PPM sensors.  We may 
therefore take into account the skin effect by replacing the number four under the square 
root sign with a five.  This extra 20% in resistance gives about a 10% increase in rms 
noise voltage.  At a temperature of 300 Kelvins (about room temperature), the noise 
voltage thus becomes: 

 

Finally, note that there are some approximations here.  There is the use of the mean 
radius in multi-layer windings and, for a PPM which is used almost continuously and 
which has high currents flowing through it during the polarization periods, the 
temperature may rise to be considerably greater than 3000 K. 

Optimization 
 

If one just wants a large signal to noise ratio with no other considerations, then the 
equations for signal amplitude and noise indicate that you need to: 

1. have a large sensor (i.e., lots of the proton rich material inside the windings), 

2. use a very large polarizing current, 

3. have a very small detection bandwidth and, 

4. use large diameter wire to minimize the noise voltage by lowering the 
resistance of the winding. 

For example, if one designed a toroidal PPM sensor with R= 0.10m, r=0.05m  (for 
our American readers, this is approximately an outside diameter of the ‘donut’ core of 12 
inches, with a 4” diameter donut thickness), wound it with 2000 turns of wire with a 
diameter of  1.67 mm (#14 AWG).  If the polarizing current were 10 Amperes, the rms 
signal voltage due to the earth’s magnetic field in the most favourable orientation would 
be about 40 microV.  The noise voltage would only be about 3.5 nV (assuming a 
bandwidth of the detector of 100 Hz) giving an outstanding S/N ratio of about 11,500! 
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Of course, this would be a pretty big (and heavy!) toroid containing several kg of 
water and it would require several kg of wire to wind it.  The dc resistance of the winding 
would be about 6 Ohms so to get a polarizing current of 10 Amperes through it, you 
would need to have a 60 Volt supply.  The unit would therefore consume about 0.6 kW 
for the period (a few seconds) that it was being polarized.  Such a unit would obviously 
be very impractical for a back-pack gradiometer where you need two such sensors.  
Imagine carrying around 60 V of batteries capable of supplying 1.2 kW for each 
measurement and with sufficient capacity for the many measurements one might like to 
make in a survey lasting several days! 

So … the question is: what is the optimum configuration (size, number of turns, etc.)?  
To answer this, one needs to decide in what way it needs to be optimized.  Faini and 
Svelto (ibid.) spent some time in discussing how one would need to optimize the 
solenoidal sensor if the principal consideration was heat dissipation in a continually 
operating unit.  In this case, the heat conducted away depends on the outside surface area 
of the solenoid and, when they had gone through the appropriate equations, they came up 
with sensors which were rather short – only roughly two times the mean radius - even 
though this results in a rather small filling factor, η. 

For a back-packed sensor, one of the critical factors is the total energy required to 
make one measurement since the energy source is a battery.  One might therefore come 
up with a figure of merit, FOM, for such a sensor which is just the ratio of signal-to-noise 
divided by the product of the polarizing voltage and polarizing current: 

 

For a sensor designed to be towed behind a vehicle, power consumption is not as 
critical a concern and some other factor such as size and difficulty in construction might 
dominate the other considerations. 

In the ‘olden days’, one would write an expression for the desired figure-of-merit 
with the dominating consideration as the denominator, and take the differential with 
respect to the denominator and equate it to zero in order to find the maximum value.  
However, in a practical case, there may be many such considerations - the size of the 
core, the availability of wire and many other factors - which one might want to vary and 
the resulting equations become very cumbersome.  With modern computers and software, 
it is much easier to just make up a spreadsheet.  You can then vary many parameters and 
look at the resulting S/N’s. 

I have done this, using Excel, for both the solenoidal and the toroidal PPM sensor.  
The file is named ppm.xls.  I have also made a spreadsheet for the cylindrical toroidal 
shape and that spreadsheet is named cyl.xls.  In these spreadsheets, one can vary the 
dimensions of the sensor, the number of turns of wire, the size of the wire, etc and look at 
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the calculated S/N.  I have used an approximate expression giving the radius of the wire 
(in m) as a function of the AWG.  I have also used an expression, for the solenoid, giving 
the approximate value of the filling factor as a function of mean solenoid radius divided 
by solenoid length.  These are the only approximations used in the calculations and 
should be accurate to better than about 5%.  In these spread sheets, I have assumed that 
the polarizing current comes from a battery and so the value of Ip is just the battery 
voltage divided by the dc resistance of the winding.  This battery voltage is then one of 
the variables in the spreadsheet.  I have also not made the number of turns one of the 
variables but, instead, the number of layers of turns.  The spreadsheet then calculates the 
approximate number of turns and the total length of the wire needed.  When winding 
either a solenoid or a toroid, it is most convenient to wind the coils as complete layers 
rather than to count turns.  For the toroid, a layer is defined as when the inside of the 
winding is close wound; the outside is therefore more loosely spaced. 

What sort of accuracy can one expect using these calculations?  Faini and Svelto 
(ibid) state that their experimental values of S/N for a particular solenoidal PPM sensor 
agreed to about within 10% of the calculations.  Presumably, one could expect similar 
agreement here.  However, it is one of the maxims of experimental physics that things 
always turn out for the worst – that is, all the little unaccountable errors and disregard for 
second order effects, etc. are always in such a direction as to make the desired quantity 
less measurable.  In the case of winding multi-turn toroids and solenoids, it is very 
difficult to actually get the number of turns one expects for a close wound layer.  
Secondly, the actual volume of the proton rich fluid will be less than the inside volume of 
the solenoid or toroid form because of the thickness of the walls.  For these reasons, it 
would be prudent to discount the calculations by some factor – say 20% in order to be 
conservative. 
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Running the Spreadsheets 

 

 

The spreadsheet, ppm.xls, shown above has two sections – one for toroidal sensors 
and the other for solenoidal ones.  There is a large section at the left middle in the 
‘Toroidal’ area where various constants are shown – these apply to both sections.  For 
example, one might choose to use a fluid with a different value for density and molecular 
structure and the appropriate values could be entered here.  Here is also where one can 
vary the number of layers of wire, the polarizing voltage and the detector bandwidth and 
observe the changes in S/N for the two configurations. 

Above it and to the right is a small area which fixes the geometry for the toroidal 
sensor – there are only two numbers here and those are the central radius of the toroid, R, 
and the radius of the toroidal cross-section, r.  The values given the spreadsheet at the 
moment are those of the blue toroid making part of the Fisher-Price ‘Rock-a-Stack’ toy. 

At the bottom of the solenoidal section, there is the similar section where one may 
enter the values for the solenoidal geometry.  These numbers are the length of the 
solenoid and its internal radius.  There is also shown, in this vicinity, a value for the G 
factor appropriate to the solenoid but this is a calculated value, calculated from the length 
and radius and so not a number which can be independently entered. 

Finally, the spreadsheet calculates the approximate inductance of the winding and 
also the approximate capacitance needed to resonate at whatever value has been entered 
for the earth’s field.  The word approximate means just that! 
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The spreadsheet is basically used to see what effect on the S/N ratio is caused by 
changing wire size, number of layers of wire, dimensions of sensors, etc. 

There is a separate spreadsheet used for the cylindrical toroidal configuration.  It is 
named cyl.xls and can be used similarly to those described above.  A screen snapshot of 
this spreadsheet is shown below.  Here, the number of turns of wire is used rather than 
the number of layers. 
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Chapter 2 The Electronics and Measurement of Magnetic Fields 

The basics of the operation of a PPM 
 

A PPM runs in two basic modes; the first of these is the polarization mode in which 
the working substance is subjected to a strong field in order to magnetize (i.e., line up) 
the protons.  The second mode is the actual measurement of the precession frequency in 
order to determine the external magnetic field strength. 

As we have seen, both modes are normally done using the same winding as both the 
polarizing electromagnet and as the precession sensor.  The function of the controlling 
electronics is to switch between the two modes.  The remainder of the electronics then 
performs the two functions.  In block diagram form, this is shown in the figure below. 

 

In practice, the division between the three major blocks may not be as clear as shown 
in the block diagram (the polarizing and control electronics may be essentially the same 
circuit) but they are, in principle, separate functions. 

Measurement accuracy 
 

Before considering the circuitry in more detail, let us discuss in a general sort of way 
exactly what we want to measure and how best to do it. 

The basic quantity to be measured is the frequency of the precessing protons.  This 
appears as an ac audio-range voltage at the terminals of the sensor.  This voltage has to be 
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amplified and the mere presence of the amplifier will add more noise.  Obviously the 
amplifier needs to have as low a noise factor as possible.  Then, the frequency has to be 
measured as accurately as possible.  Since the signal decays exponentially with time 
(typical time constant is a few seconds), the measurement period is limited.  The signal-
to-noise ratio calculated in the previous chapter is the value at the instant the polarizing 
field is turned off.  Since the signal amplitude decays, the signal-to-noise ratio gets worse 
as time goes on. 

Finally, we need to consider exactly what we want to measure.  In a magnetometer, 
we want to measure the absolute value of the magnetic field.  In a gradiometer, on the 
other hand, we just want to measure the difference in frequency between two sensors and 
that may be entirely a different problem. 

It is intuitive that the ultimate accuracy in measuring the frequency must depend in 
some way on the signal-to-noise ratio.  So let’s consider what the theoretical limitations 
are – we can then discuss ways of making the measurements later and see how the closely 
various techniques come to the theoretical limit. 

Let the amplitude of the amplified sensor output be given by: 

where A is the amplitude of the desired signal and a is the amplitude of the noise (the 
sum of the sensor noise plus the additional noise added by the amplifier).  A/a  is the 
actual signal-to-noise ratio achieved by the system.  I have shown the noise as the sum of 
an in-phase component (the sine term) and an quadrature component (the cosine term) 
because the noise will have a random phase with respect to the desired signal.  Let’s 
assume, further, that A is much greater than a – that is, that the final signal-to-noise ratio 
is reasonably high (the following analysis will be fairly accurate if it is greater than about 
10).  Then, the above equation can be rewritten: 

 

where 

 

Now, from the measurement point of view, this random phase added by the noise can be 
thought of as causing a change in the period of the sine wave since, in measuring 
frequency, we are really measuring zero crossings.  This is illustrated in the drawing 
below. 
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In this figure, I have shown the phase error, ϕ, as a crossing time error, ∆t.  The two are 
related by: 

Now, let use suppose that we are going to measure the frequency over some interval 
of time, T.  There will be an uncertainty in the first zero-crossing of ∆t at the beginning of 
the interval and a similar uncertainty of ∆t at the end of the interval.  The standard 
deviation corresponding to plus or minus one unit is about 2/3 of a unit and, since there 
are two such uncertainties (one at the front and one at the end), the overall standard 
deviation will be about √2 times this 2/3 of a unit – altogether about one unit of ∆t.  The 
relative error, therefore, in measuring the frequency will be ~∆t/T.  This is the error due 
to the noise alone and is really the theoretical best that can be done.  Other errors will add 
to this. 

How big is this minimum error in a realistic case? A table of accuracy versus S/N is 
shown in Appendix D.  As an example, suppose frequency (2130 Hz) was measured over 
a total period of ½ second and that, at the end of this interval, the overall S/N of the 
system was 100 (it will be better at the beginning because the signal decays 
exponentially).  Then, ∆t works out to about 0.5 microS (assuming the frequency to be 
2130 Hz and the overall best case error will therefore be about one part in 1 million.  If 
the field being measured were 50 µT, then the error would be just 50 pT!  Wow! 

This looks really good since, from the S/N calculations in the previous chapter, it 
looks like S/N values of ~100 are fairly easily obtainable.  However, now we need to 
tackle the subject of actually measuring the frequency – what techniques are there and 
what have been done by others. 

First, let us consider the obvious (and simplest) method and that is to measure the 
frequency using a frequency counter.  If we had a measurement interval of one second, 
the count (assuming the frequency to be 2130 Hz) would be 2130 plus or minus 1.  The 
plus or minus one means a standard deviation of about 2/3 of a unit so the relative error 

ω
ϕ=∆t
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would be 2/3 parts in 2130 corresponding to an average error of one part in about 3000.  
This corresponds to about 15 nT in a 50 µT field.  The error for any individual 
measurement will be just be plus or minus one part in 2130 – about plus or minus ~25 nT 
in a 50 µT field.  This is pretty poor.  Of course, we could measure the frequency over a 
longer period but we are limited to the fact that the signal decays exponentially with a 
time constant of a few seconds so periods of greater than a few seconds are just not 
feasible.  Suppose, we had sufficient S/N so that the signal was still well above the noise 
after ten seconds.  Then our average accuracy would be ten times better – about 1.5 nT 
and the error for an individual measurement would be plus or minus about 2.5 nT.  This 
is still not very good – it is about 100 times worse than the ultimate limit of 25 pT for a 
S/N ratio of 100 measured over 1 second.  …and, the measurement would take 10 
seconds in addition to the polarizing time. 

The standard method for improving the accuracy of frequency measurement for low 
frequency signals is not to measure frequency but to measure period instead.  In principle, 
you can think of this as being done in the following way.  Suppose we take our 
magnetometer signal and use it to close and open an electronic gate.  Suppose the gate is 
opened at the rising edge of the signal sine wave and closed at the next rising edge.  This 
gate connects a very high frequency clock to a counter.  The counter will therefore count 
the number of clock pulses during one period of the signal sine wave.  Of course, the 
count is only accurate to plus or minus one count but, if the clock frequency is very high, 
the relative error can be made very small.  We can make it even smaller but leaving the 
gate open for some integral number of signal periods so that the total count is greater – 
the error is still just plus or minus one count.  It is easy to show that, if the gate is open 
for N periods of the signal which is at frequency fp and the clock frequency is fc, then the 
period being measured is accurate to plus or minus one part in; 

 

For example, if the gate time is 2048 periods of a signal at 2130 Hz and the clock 
frequency is 1 MHz, then the period can be measured accurate to plus or minus one part 
in ~106 – this corresponds to plus or minus 50 pT for a 50,000 nT field.  This is about 
twice the theoretical limit for a S/N of 100 measured over the ~1 second that the 2048 
periods of the signal takes. 

Because we don’t want to measure frequency but rather the magnetic field in nT, we 
may rearrange the above equation to give us the measured precession frequency.  Then, 
using the relationship between this frequency and local magnetic field, we get: 

n
Nf

B c4875.23=  

where N is the number of precession periods over which the clock is counted, fc is the 
clock frequency and n is the number of counts of the clock frequency observed.  The 
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quantities in the numerator are usually constant for a given system and so can be 
evaluated just once and then the local magnetic field is given by the equation: 

n
B α=  

where α is just cNf4875.23 .  Again, using the previous example, N would be 2048 and fc 
would be 106 giving us an α of 4.81024×1010. 

This method is the basis of most commercial magnetometers.  In the ‘olden days’ this 
method of measuring the  period was implemented in hardware using strings of logic and 
counter IC’s.  Nowadays, it can be done using microprocessors very easily and it is really 
the method of choice. 

The absolute error in this form of measurement depends on the stability of the clock.  
Since even the most inexpensive crystal controlled clock available in hybrid circuit form 
will have a stability of better than about one part in 105, the ultimate measurement 
accuracy and hence magnetometer sensitivity will depend mostly on this stability.  One 
part in 105 of the earth’s field corresponds to about 0.5 nT. 

Finally, I should mention one other method in use in some gradiometers.  A 
gradiometer gives the difference between the magnetic field at two different sensor 
locations.  If PPM’s are used for both sensors, then the difference between the magnetic 
fields at the two locations will appear as a difference in frequency.  The simplest way of 
observing a frequency difference is to observe the ‘beat’ frequency between the two5.  
The beat appears when the two signals are electronically added together – what could be 
simpler than that?  The answer is not much – but how sensitive is this beat frequency to 
differences in magnetic field? 

The beat frequency appears as a modulation of the signal from the two 
magnetometers.  The signal decays exponentially with time but, superimposed on this, is 
a rise and fall of amplitude at the beat frequency rate.  A difference of 1 Hz in frequency 
between the two gives a modulation of one ‘beat’per second.  If the difference is very 
small, say 0.1 Hz, then the beat will take 10 seconds.  So … the above question becomes 
the following; how slow a beat can one detect in a signal which is decaying towards zero 
with a time constant of a few seconds?  This is a matter of judgement but, in my 
experience, it would be very difficult to detect a beat any slower than about 5 seconds.  
Using this number, the minimum detectable frequency difference would be about 1/5 Hz.  
As we have seen earlier, a change of 1 Hz corresponds to about 23.5 nT so a frequency 
difference of about 1/5 Hz corresponds to a magnetic field difference of about 5 nT. This 
is much poorer than the errors one can expect in a system where period is measured so 
the technique, while simple, is not really very sensitive.  It simply does not take 
advantage of the inherent sensitivity of the PPM.  Therefore, even in a gradiometer, it 
seems desirable to use the period measurement to get the ultimate in accuracy.  In fact, 
for a gradiometer where we are measuring the difference in two periods, the stability of 
                                                 

5 see, for example, the ‘Delta2 Magnetometer by M.L. Dalton Research, 6035 Aberdeen 
Dallas, TX, 75230.  Ph: (214) 691-4925 
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the clock is no longer as important – it only has a second order effect on the 
measurement. 

In summary, the theoretical limit of sensitivity is limited by the signal-to-noise ratio 
of the system where the noise is the sum of the sensor noise plus the amplifier noise.  For 
reasonable S/N ratios, this theoretical limit is very small and the measuring errors in any 
practical system will be much larger.  The optimum system for measuring sensor 
frequency is one in which the period is measured using a high-speed clock.  The errors in 
measurement then depend mostly on the clock frequency (and its accuracy – except in a 
gradiometer) used in the period measuring system.  Since stable frequencies of several 
MHz are easily produced by simple circuitry, a magnetometer or gradiometer for the 
earth’s magnetic field which is accurate to at least ~1 nT is readily achievable.  
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Electronics functions 
 

Control 
 

The controller must switch the unit between its polarization and measurement modes 
and, supplementally, provide the interface with the operator.  This latter function, at its 
simplest, consists of going through one cycle of polarization and measurement when 
directed by, for example, a push-button switch.  In addition, the controller may also 
operate a display which gives the magnetic field output (or, in the case of a gradiometer, 
the difference between the magnetic field at two sensors) in some easily interpretable 
units.  It may also provide some mechanism for storing results electronically.  Indeed, the 
controller may easily be the most complicated part of a completed instrument even 
though its basic function of switching between two modes is very simple. 

Polarization 
 

The polarization part of the cycle is very simple in concept.  A polarizing current 
must be passed through the coil in order to magnetize the substance.  The substance takes 
some time to reach its final magnetization state – it approaches it exponentially with a 
time constant, called the ‘spin-lattice’ relaxation time as shown below. 

 

T1 is 2 to 3 seconds for water; about 0.5 seconds for kerosene, for example.  In order 
to get close to the desired magnetization, the polarizing current needs to flow for several 
times this relaxation time.  For example, after 4 time constants (say, 10 seconds, for 
water), the magnetization will have approached about 98% of its final value.  After one 
time constant, it will only have approached 63% of the final value. 

Magnetizing the substance  takes energy and the amount depends on the size and 
geometry of the sensor.  Primdahl (ibid.) states, as a general rule of thumb, that it takes 
~50 Joules per measurement.  The actual number for any particular case can be found 
from the spreadsheet.  Simply multiply the polarizing current, the battery voltage, and the 
polarizing time in seconds to get the energy required in Joules.  Remember that the longer 
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the polarizing current is on, the closer the substance gets to its final value but there isn’t 
much point in keeping it on for more than a few time constants. 

After the polarizing current is switched off, the precession signal amplitude will 
decay exponentially with a time constant called the ‘spin-spin’ relaxation time, T2.  This 
is shown below: 

T2 also depends on the substance and is about 2.1 seconds for distilled water with 
oxygen dissolved in it (i.e., normal distilled water).  If the oxygen is removed, this time is 
increased to about 3.1 seconds.  Oxygen may be removed from distilled water by 
bubbling dry nitrogen or helium through it or by boiling it and letting it cool down in an 
oxygen free environment. 

There is one other critical factor to be considered.  That is, one must turn off the 
polarizing current rapidly.  If it is not, the protons will start to precess before the 
polarizing field has gone to zero and the final signal amplitude may be much reduced.  
How rapid is rapid?  The answer is that, so as not to perturb the proton alignment, the 
polarizing current should go to zero in a time much shorter than the precession period.  
The precession period is about 0.5 mS (1/2130 of a second) in the earth’s magnetic field.  
Therefore, one would like to turn off the polarizing field in a time shorter than this - say, 
less than 0.05 mS. 

Turning off the field that rapidly would be very simple if it were not for the fact that 
the polarizing coil has some inductance.  The energy stored in its magnetic field is equal 
to 

 

and this energy must be dissipated in that short turn-off period.  If a switch or a relay is 
used to open the circuit and there is no other elements in the circuit, the inductive voltage 
spike will cause an arc which will dissipate some (most) of this energy.  It is best to 
somehow ‘snub’ the voltage – this means to limit the magnitude of the inductive spike - 
and the usual way of doing this is to have a Zener diode across the coil.  This diode must 
not conduct while the polarizing voltage is applied across the coil but should conduct at a 
voltage much lower than that required to cause an arc at the contacts.  Typical Zener 
diode voltage ratings are 1.5 to 2 times the polarizing voltage.  We will discuss this in 
more detail later. 
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If a semiconductor switch is used instead of a relay, then normally, the turn-off will 
be very abrupt (typically less than a microsecond) and the inductive voltage spike may or 
may not be absorbed in the semiconductor switch.  The transient behaviour of the switch 
and its associated circuitry then becomes important. 

The nature of the switch and how it is turned off are important design considerations 
in the overall scheme of things.  We will look at this in more detail later when we 
consider actual circuits. 

Amplification 
 

The desired signal is normally very small – of the order of microvolts only.  
Therefore it is very important that the amplifier not add any more noise than necessary.  
Fortunately, the study of low-noise amplifiers in the audio range is well advanced 
because of the preponderance of audio devices being manufactured.  Moreover, low noise 
operational amplifiers and/or transistors are readily available so it is just a matter of 
designing an appropriate circuit to take advantage of them. 

The signal source, the sensor, is a low impedance device with typical source 
resistances of ~ten Ohms.  It is also inductive with typical inductances of a few ten’s of 
mH.  As stated before, the typical output voltage levels are a few microVolts. 

Since the signal needs to be coupled to an amplifier anyway, the coupling capacitor is 
normally chosen to have a value which resonates with the desired signal frequency.  I will 
discuss the effect of resonating the signal in this way in a later section.  Since the overall 
Q of the L-C circuit is determined almost entirely by the coil and since these typically 
have Q’s in the range from10 to 100, the first limitation on the bandwidth of the system is 
determined by this front-end resonant circuit.  The circuit may be arranged in two ways 
depending on whether one has a low impedance amplifier or a high impedance amplifier.  
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These two alternatives are shown in the figure below. 

In both circuits, the capacitor is resonant with the sensor at the signal frequency (2130 Hz 
for a 50 µT field).  If the resistance of the coil is r Ohms at the signal frequency 
(approximately 20% greater than the dc resistance of the coil), then the parallel effective 
source resistance of the parallel configuration is Q2r.  For example, if the dc resistance of 
the coil were ~7 Ohms, the effective resistance at 2.13 KHz would be ~10 Ohms.  If the 
coil Q were ~25, then the source resistance in the parallel case would be ~625*10 which 
is ~6.3 K. 

The topic of low-noise amplification is a very broad one and, without doing too much 
violence to the facts, it is possible to say that the parallel configuration almost always 
gives better results.  This is because the lowest noise audio amplifiers tend to have high 
input impedances.  National Semiconductor Corporation6 has a series of excellent 
application notes describing low-noise techniques.  It is possible, however, to use an 
audio transformer in the series configuration to transform the low impedance sensor 
source into a higher impedance one.   

It is possible to characterize the noise performance of an amplifier by defining a noise 
figure, NF.  The NF is defined as the input S/N divided by the output S/N; it is usually 
expressed in dB.  Obviously, the lower the NF, the better.  For PPM’s, we need an 
amplifier with a low NF in the audio range – fortunately, there has been considerable 
development in low-noise audio amplifiers and there is a range of amplifiers available.  
The actual NF of an amplifier depends on the source impedance – in this case, the PPM 
sensor is the source.  In the series configuration, the source impedance will be of the 
order of tens of Ohms – in the parallel configuration, it will be in the range of several  
thousand Ohms.  In the example given earlier, the parallel source impedance worked out 
to be about 6K.  This is just about optimum for the National Semiconductor LM837 quad 
op-amp.  For the circuit shown below, the calculated NF is about 1.4 meaning that the 
S/N from the sensor is degraded by just 40%. 

 

                                                 
6 AN-104 gives a good description of how to calculate the noise figure.  I recommend it for anyone 
interested in finding out more about amplifier noise. 
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The circuit has a voltage gain of about 1000 thus bringing the sensor signal up into 
the mV range.  It is advisable not to have too much gain in the first stage of amplification 
because, normally, one wants to do some band-pass filtering before further amplification.  
After the signal is in this voltage range, the noise contributed by further stages of 
amplifiers will be negligible.  Finally, before leaving the topic of low-noise amplifiers, it 
is worth mentioning that normal carbon resistors are noisier than metal film resistors.  
Therefore, the resistors in the earliest stages of amplification should all be metal film. 

Although I have discussed a particular low-noise op-amp as a suitable input amplifier, 
some discrete transistors offer an even lower noise figure.  The ultimate in low-noise 
preamplifiers can be built using specially constructed discrete transistors such as the 
National Semiconductor LM394. National Semiconductor has an application note for this 
device, AN-222, which is very helpful.  

The band-pass filter is an important part of the amplifier since it will define the 
system bandwidth and hence the output S/N.  Part of the band-pass is defined by the 
sensor-capacitor parallel (or series) combination at the front – the bandwidth is inversely 
proportional to the Q of the L-C network.  For typical Q’s of ~25, the bandwidth will be 
~90 Hz at 2.1 KHz.  However, the amplifier noise is added  subsequent to this L-C 
circuit so it is important to have an additional band-pass circuit later.  The question then 
becomes: what bandwidth is desirable?  If the PPM is to be used in the field, the local 
value of the earth’s field can vary between ~45 to ~60 µT.  The corresponding sensor 
frequencies will therefore vary from about 1.9 KHz to 2.6 KHz.  From the viewpoint of 
getting a signal at some random location on the earth’s surface, then, one would like the 
bandwidth to be no smaller than 700 Hz.  However, from the viewpoint of enhancing the 
output S/N, one would like the bandwidth as narrow as possible.  Thus, we have two 
conflicting requirements. 

This can be solved in the following way.  Using a microprocessor, one can design a 
system with a variable band-pass filter which is digitally controllable.  Then, a 
preliminary sample of the data with a wide bandwidth can be used to determine the 
approximate frequency.  Then the bandwidth can be reduced to make the final 
measurement.  As I have showed in a previous section, it is possible to make a 
measurement of the precession signal period with an accuracy corresponding to better 
than 1 nT in about 0.12 seconds.  Since the precession signal decays with a time constant 
of several seconds, there is sufficient time to make a preliminary estimate of the 
frequency, then set the filter to the correct frequency, narrow the bandwidth and then 
make another measurement with the narrow bandwidth all within one polarize/measure 
cycle. 
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Chapter 3 Practicalities of making a Magnetometer or Gradiometer 

Overall Considerations 
 

A single magnetometer will give a measurement of the total magnetic induction at the 
location of the sensor and at the time that the measurement is made.  On the surface of 
the earth, the local magnetic field not only varies with location but it also depends on the 
time.  These time variations are due to the presence of currents in the upper ionosphere 
which are caused by the interaction between the earth’s magnetic field and the solar 
wind.  These variations are greatest in the auroral zones of the earth (roughly at latitudes 
of ~60 degrees) but do occur at all latitudes.  In the auroral zones, it is common to see 
magnetic ‘sub-storms’ in which the local magnetic field will vary by some hundreds of 
nT over a period of a few hours.  Even at lower latitudes, variations of ten’s of nT over 
periods of several minutes are common.  A single magnetometer head will allow one to 
monitor these variations; to have one’s own magnetic observatory. 

In prospecting, however, one wants to detect the small variations in magnetic field 
caused by ferro-magnetic materials in or under the soil.  These small variations can easily 
be masked by the time dependent variations described above.  That is, if one makes a 
series of observations at a number of different locations over the surface of the earth, 
each one will be different.  However, one does not know whether these differences are 
due to artifacts under the soil or, perhaps, they were caused by the whole magnetic field 
in that vicinity changing in time over the period that the measurements were made.  For 
this reason, gradiometers are used.  In a gradiometer, there are two sensor heads.  Local 
time variations due to upper atmospheric currents will cause the same change in both 
sensors; both will increase or decrease essentially the same amount because the cause of 
the change is very far away.  The difference between the sensors will be due to magnetic 
material in the vicinity of the two sensors alone.   Typically, the two sensors might be 
mounted at the top and bottom of a non-magnetic rod which is held vertically at a 
location where a measurment is being made.  The observed difference between the 
magnetic field measured at each sensor will then be a measure of  the vertical gradient 
caused by material under the soil in that vicinity. 

Another technique is to locate one of the two sensors in a fixed location and to 
connect the other sensor through a long cable.  The other sensor can then be located at a 
number of places in the vicinity of the fixed sensor thus mapping the magnetic 
differences around the fixed sensor. 

Yet another configuration is to mount the two sensors horizontally at the ends of a 
long non-magnetic boom.  This can then be mounted on a vehicle or towed behind a boat  
and measurements taken as the system is moved along. 

With this background, let us now look at what qualities are important in an 
instrument.  For the purposes of this discussion, let us assume that we want to make a 
sensitive gradiometer. 
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Perhaps the most important consideration is selection of the size and weight of the 
finished magnetometer head(s).  For a gradiometer, there will be two of them.  From the 
viewpoint of sensitivity alone, big is good.  The larger the sensor, the more working fluid 
there will be and the more turns you can wind.  Both of these increase signal-to-noise 
ratio.  For a field instrument meant to be carried on a back-pack, there are obvious 
constraints on the size and weight and, in general, you want the sensors to be as small and 
light as is commensurate with a reasonable signal-to-noise ratio.  The secondary 
consideration must be the power required to polarize the sensor(s).  Again, for a back-
packed instrument, you are constrained by the size and weight of the batteries needed to 
operate the instrument.  Dry cells give the greatest power to weight ratio at a reasonable 
cost however, dry cells are usually cased in steel containers and so are highly magnetic. 
Ni-Cd batteries are magnetic as are some Lithium batteries because of the way they are 
encased.  In practice, you will want to use a ‘gel-cell’ rechargeable battery because it is 
not magnetic and still gives a reasonable energy per unit weight. 

Let me work out one example.  Suppose you want to make a portable gradiometer 
suitable for back-packing.  You decide to make toroidal sensors wound on cores made 
from the ‘blue’ toroid in a ‘Rock-a-Stack’ toy filled with distilled water.  If you wind 
about 10 layers on these cores with #20 AWG copper wire, and use a polarizing voltage 
of 12 V, you can expect a S/N of about 300.  Each core, after being wound, has a total 
mass of  ~1.2  kg.  The dc resistance is about 7.5 Ohms so the current drawn is about 1.6 
A and, if the time you polarize the core is 6 seconds, it will consume about 115 Joules of 
energy during this period.  Because there are two cores in the gradiometer, the instrument 
will consume about 230 Joules per measurement.  We know that the remainder of the 
electronics will consume some power.  However this will, usually, be small compared to 
the total power consumed in the polarization portion of the measurement cycle.  A small 
1.4 A-hr 12V ‘gel-cell’ battery can produce about 60,000 Joules of energy (12 × 1.4 × 
3600).  Therefore, you can make ~ 60,000/230 measurements on each charge of the 
battery; about 260.  In reality, you won’t be able to make even this many because the 
battery’s rated capacity is given for a much lower discharge rate.  Polarizing the sensors 
takes a very high current and at a high current, the capacity of the battery is considerably 
less than the number written on the battery case.  So, let’s estimate that the thing will be 
good for at least 100 measurements, perhaps as many  as 200. 

 You have to decide whether one to two hundred measurements is sufficient.  If 
you’re staying in a motel every night and just hiking out during the day, you can recharge 
the battery every night and so it might be acceptable.  If you’re back-packing into some 
rough country for several weeks, it clearly wouldn’t be good enough.  In that case, you 
can choose a larger capacity (and heavier!) battery – or, you can choose a bigger core, 
wind more turns on it with a much smaller wire and still get the same S/N with a smaller 
current drain.  Or, you can decide that a S/N ratio of 100 is good enough and so get by 
with a smaller and lighter sensor.  In short, you have to optimize the design depending on 
what you consider to be the most important constraints. 
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Winding the coil 
 

Winding a solenoid is relatively easy.  The working fluid can be put into a bottle 
which will slip inside the form and so may be readily changed and refilled if necessary.  
A convenient container is the more or less standard laboratory 0.25 litre bottle; it has a 
diameter of about 6 cm and a length, not counting the neck, of about 11 cm.  A solenoid 
is most conveniently wound on a lathe and, with a little care, it is possible to wind the 
number of layers very uniformly and smoothly.  The form can be made from PVC plastic 
irrigation tubing which is available in a number of diameters and for which there are very 
good adhesives.  It is my opinion, however, that it is much much better to use a toroidal 
core because of its overwhelming advantages. 

Making a toroidal sensor has a number of difficulties.  The first problem is finding a 
suitable form.  The best thing I have been able to come up with is the hollow blue ring 
which is the largest ring on the Fisher-Price ‘Rock-a-Stack’ toy.  It can be filled with 
about 0.18 litres of fluid; this is a bit small, a greater volume would have been more 
desirable.  The next difficulty in making a toroidal sensor is winding the requisite number 
of turns on the form. 

The above picture shows the blue toroidal form, filled with distilled water (with no 
dissolved oxygen), a reel of #20 AWG wire and a shuttle.  The shuttle was made from 
some thin plywood and was about 0.7 meters in length.  The shape was slim enough to 
pass easily through the centre of the toroid even when the toroid was nearly completely 
wound.  The shuttle was wound with about 200 meters of the wire.  It is convenient to put 
a rubber band around the wire at each end of the shuttle – this keeps the wire from falling 
off the shuttle too easily as it is passed through the centre of the toroid form. 

It is easy to wind the first layer of the toroid uniformly, closely wound on the inside 
and evenly spaced on the outside of the toroid,  because the form is smooth and uniform.  
The second layer is more difficult because it will not fit nicely over the first layer on the 
inside.  Each successive layer gets more and more difficult to wind uniformly.  However, 
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if you take your time, it is possible to do a fairly neat job.  It is very important to avoid 
kinks in the wire – when you get a small loop (and you will get many of them!), carefully 
straighten it out - do not pull it tight.  The next picture shows the sensor when completed 
with about ten layers of wire. 

This sensor contains about 2000 turns of the #20 AWG enameled wire and has a total dc 
resistance of 7.4 Ohms.  I estimate that it took about 8 hours of winding to create this 
sensor – done a bit at a time while watching TV in the evenings or while having  morning 
coffee. 

A ‘fatter’ toroid core would be better as it would hold more of the working fluid.  I 
have considered using an inner tube from a small scooter tire.  These can be obtained 
with outside diameters of the order of 15 cm and with a radius of the core of about 2 cm.  
The problem here is how to make them rigid enough to wind on the wire.  One possibility 
that occurred to me was to fill the core with water and then freeze it.  If the wire size used 
is greater than about #20 AWG or so, the wire itself becomes rigid enough after a few 
layers have been wound.  Therefore, after winding the core, it can be allowed to thaw.  I 
have not tried this – it is just an idea.  An alternative might be to inflate the inner tube to 
the desired shape and then wrap it with fiberglass tape and give it a coat of resin to 
harden it.  Again, I have not tried this. 

One final caution: don’t keep the wire too taut as it is wound – on either a solenoid or 
a toroid.  When the wire is tight, it will tend to compress the core.  If you are using a soft 
plastic form, because of the number of turns, it is possible to collapse the coil form if the 
wire is wound too tightly.  It is necessary to make each turn snug in order to wind the coil 
uniformly but you should not wind it any more tightly than is necessary.   
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Other Features in a Field Instrument 
 

An instrument to be used in the field for prospecting or exploration should have 
several features.  I have already discussed the weight-sensitivity trade-off. 

Another very desirable feature is to provide some means of automatically recording 
the values measured.  For example, when prospecting, it is often desirable to make a 
series of measurements in a grid over the ground – perhaps on a one meter grid.  It is 
annoying and time consuming to have to write down the value of the gradient in  a 
notebook at the time of each measurement.  It is much better to have some internal 
electronic storage in the instrument to record the successive value as they are measured.  
Then, it is a simple matter to note where the grid started and its orientation and to recover 
the actual values later.  Fortunately, large scale digital storage is easily and cheaply 
available and adding this feature to the instrument is relatively trivial.  Readily available 
and inexpensive serial EEPROM memory devices are capable of storing several 
thousands of multi-byte data values and keep this data even when the power is turned off.  
The latter aspect is important since you don’t want to lose data if the batteries fail. 

Overall Block Diagram 
 

The overall block diagram for a modern gradiometer is shown below. 
 

 
There are, of course, many ways of implementing the required functions and the 

above block diagram is just one such way.  For example, many modern ‘single-chip’ 
microprocessors have enough internal capacity to implement most, if not all, of the 
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functions in a single unit.  However, it is simpler both in concept and in implementation 
to divide up the various sub-functions in the way shown. 

 

The Slave Units 
 

The function of the slave unit is to make a measurement (i.e., polarize the sensor, 
measure the period) upon the command of the master controller.  This unit contains its 
own microprocessor, a digitally controlled band-pass amplifier, the low-noise 
preamplifier and the polarizing circuit.  The interface between the slave and the master is 
very simple: the slave receives a single command to make a measurement and returns a 
single value which is the measured magnetic field strength in nT 
 

The Master Controller 
 

The master controller provides the interface between the slave units and the outside 
world.  It has a serial interface so that data from its internal storage can be sent out to, for 
example, a laptop computer for further analysis.  It sends the commands to the slaves and 
receives the measured values from them.  It interacts with the human operator by sensing 
the state of the switches and by providing output to the display. 

 

The Display 
 

The display gives the operator information about the operation of the unit.  For 
example, it must show the measured values after each measurement has been made.  It 
must also give some information about the internal operation of the instrument as a whole 
– perhaps some measure of the battery capacity remaining, how much internal memory  
capacity remains unused, etc.  Fortunately, very rugged and very low power alpha-
numeric LCD displays are available and they are well suited to the task.  Graphical data 
is not really necessary in a field instrument but LCD versions of these are also available.  
LED display devices are not really suitable since they tend to be difficult to see in 
sunlight 

Serial Interface 
 

This can be a simple RS-2327 interface to a personal computer. If the internal storage 
memory of the instrument itself is 64 KB, then at 9600 baud, the entire memory contents 
can be dumped out into a personal computer in about a minute.  That means that an 
extremely simple interface protocol can be devised: perhaps as simple as the reception of 
a single byte by the instrument from the external computer triggering a memory dump. 

                                                 
7 RS-232 really refers to a 25-pin interface.  Most modern personal computers have a simpler 9-pin 
interface which implements some of the RS-232 protocol – and this is more suitable for this application. 
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Switches 
 

The switches provide the human input to the instrument.  This portion needs to be 
carefully thought out.  Any field instrument has to be extremely simple to operate.  
However, people get tired after a day in the field so it should not be too easy, for 
example, to erase the instrument’s internal memory.  Since the interface is to a 
microprocessor, it is possible to use a ‘menu method’ to access the various functions of 
the instrument.  This requires only a few switches but gives the greatest flexibility. 
 
The standard modes of operation should require the fewest human interactions while 
more dangerous or complex tasks (e.g., memory erasure) should require a not-so-simple 
sequence of human actions. 
 

The Polarizing Circuit 
 

The polarizing circuit deserves a bit more discussion.  On the surface, it appears 
simple enough – you just have to connect the sensor to the battery for the polarizing 
period and then turn it off.  The first part is simple enough.  When the voltage is applied 
across the sensor coil, the current rises from zero to the final value exponentially with a 
time constant of L/r – typicaly L ~ 10 mH and r ~10 Ohms so this time constant is of the 
order of a few mS.  The latter part, the turning off the current, needs to described in more 
detail.  We have said before that the polarizing field needs to be turned off in a time much 
less than the precession period.  This means that the current must be switched off in less 
than about 50 microseconds.  Unfortunately, the sensor has considerable inductance and 
it takes some time to dissipate the energy stored in the sensor’s magnetic field by the 
polarizing current. 

Let’s start this discussion but considering what we mean exactly by ‘turning off’ the 
polarizing field.  Consider, for a moment, a situation where the polarizing field and the 
local earth’s magnetic field (which is what you want to measure) are at right angles to 
one another as shown in the figure below. 

 

Here, Be is the earth’s field, Bp is the polarizing field and Br is the resultant of the two.  
Typically, when the polarizing current is flowing, Bp is much, much greater than Be and 
so the angle, φ, is very small – a fraction of a degree.  So .. Br is more or less parallel to 
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Bp.  As the current is turned off, the resultant stays more or less parallel to Bp until the 
polarizing field is only a few times larger than the magnitude to Be and then it starts to 
move towards Be.  It is really just this last period that must be smaller than the precession 
time since, prior to that, there is no significant change in the direction of the polarizing 
field.  Let us arbitrarily say that when φ becomes ~10 degrees is the beginning of the 
‘effective’ turn-off period.  Let this period be Ts – the ‘switching’ period.  It starts when φ 
is ~10 degrees which is when: 

 

Therefore, we may consider the turn-off switching time to start when Bp is ~6× Be which 
is ~300 µT.  Let us call the current flowing through the inductor at the moment to be Is.  
Ts is thus the time from when the polarizing current goes from Is to zero. 

Now, let us look at a possible circuit for switching the polarizing current on and off.  
HEXFET’s are used because they have such a low on-resistance that the losses through 
them are negligible.  The first switching transistor could just be a simple bipolar NPN 
switching transistor instead of a HEXFET but would require a few more resistors in the 
base circuit and would require slightly more drive. 

 
 

What happens when the current is switched off?  When the IRF5210 is turned off, the 
magnetic field of the sensor starts to collapse.  This induces a voltage across the sensor 
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which is negative at the ‘Output’ end with respect to ground.  If it were a physical switch 
instead of transistor, the voltage would go high enough to cause some arcing across the 
terminals of the switch.  In the circuit above, the drain of the IRF5210 starts to break 
down at it’s rated break-down voltage which is, for this particular transistor, about –100 
Volts.  The current rapidly goes down towards zero during this breakdown period and, 
when it reaches zero, the induced voltage goes to zero and the switching period is over.  
During this period, the entire stored energy in the inductor is dissipated in the switching 
transistor and in the dc resistance of the sensor.  The final change in current when the 
voltage across the sensor goes to zero is so abrupt, that the sensor will ‘ring’ at its’ self 
resonant frequency (the resonant frequency of its inductance along with its’ stray parallel 
capacitance).  This ringing is normally quenched by placing a resistance of a few hundred 
times the dc sensor resistance in parallel with the sensor – typically, a few K for a ~10 
Ohm sensor.  This large resistance in parallel with the sensor will have no significant 
effect on the sensitivity. 
 

During the breakdown period, the voltage across the inductor is approximately 
constant and so the rate of change of current with time is approximately linear (the 
approximation is because we’ve neglected the resistance of the sensor). For an inductor, 
the terminal voltage is related to the current through the device by: 
 

 
So we would expect the current to decrease to zero approximately as shown in the graph 
below. 

 
ts is the total time to collapse the field.  The question is: what is Ts, the time for the sensor 
current to go from Is to zero? 
 

dt
dILV −=
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Let’s calculate this for the example toroidal sensor described in this chapter.  Here Ip 
was 1.6 A.  Observing the turn-off with an oscilloscope, ts is approximately 0.2 mS8.  
From the equation relating the centre field in a toroidal inductor magnetic field to the 
current flowing through it, the current flowing when Bp has fallen to 300 µT is: 

 

 
Since the current is decreasing at 1.6 A in 0.2 mS (8000A/s), it will take about 2.5 µS to 
fall the last 20 mA.  This easily meets the requirement that the time be shorter than about 
50 µS. 
 

Many existing circuits use a Zener diode (in series with an ordinary diode so as not to 
conduct when the polarizing voltage is connected) across the sensor to limit the 
breakdown voltage – typically the Zener rating is a few times the supply voltage.  What 
does this do?  The answer is that the Zener diode provides the limiting voltage at which  
the sensor’s inductive energy is dissipated.  In general, because dI/dt is proportional to 
the voltage, the higher the voltage rating of the Zener, the faster the discharge and hence 
the shorter the time taken.  Therefore it is desirable to make this voltage as high as is 
compatible with the rest of the circuit (see Appendix B). 
 

Finally, although strictly speaking not part of the polarizing circuit, we must discuss 
how to connect the sensor to the amplifier after the polarization cycle is complete and we 
want to amplify the proton precession signal. The voltage at the ‘Output’ end of the 
sensor goes from the positive polarizing voltage (12V in this example) during the 
polarizing portion of the cycle to the negative breakdown voltage (-100 V in this 
example) of  the HexFET  at the end of the cycle.  If we were to just capacitively couple 
the sensor output to the front end of our low noise operational amplifier, we would be 
putting a voltage to the input with a swing of about 110 V.  This would certainly not do 
the amplifier any good!  We could lower the voltage swing by using a lower voltage 
Zener as mentioned above – but then, the time taken to collapse the field would be 
longer.  To get the voltage swing low enough not to damage the amplifier might result in 
an unacceptably long time to collapse the field. Obviously, simple capacitive coupling is 
not going to work unless the amplifier input can handle a fairly wide voltage swing.  
Typical low-noise amplifiers cannot. 
 

The traditional answer to this problem has been to use a relay to connect the sensor to 
the amplifier after all the high voltage stuff has settled down.  This has the disadvantage 
that all relays have a soft iron core and so will perturb the local magnetic field which we 
are trying to measure.  However, it is possible to find some very small relays with very 
small cores and, if the relay is located at some distance from the sensor, the problem is 
not too serious.  In the case of a gradiometer, the problem can be further ameliorated by 
                                                 

8 It is possible to calculate this time.  A more complete derivation of the circuit behavior is given in 
Appendix B.  There it is shown that the approximate method used here is good enough (for this case).  In 
general, it will be good enough provided that the breakdown voltage is sufficiently high. 
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locating the relay roughly equidistant between the two sensors; the offset due to the iron 
then roughly cancels out.  It goes without saying that the relay should be in the 
unenergized position during the measurement portion of the cycle.  To properly protect 
the amplifier, the relay should be energized before the polarizing voltage is turned on in 
order to disconnect the amplifier from the sensor.  It should then be turned off to 
reconnect the amplifier to the sensor after the polarizing current is turned off and after 
the high voltage dissipation part of the cycle is over.  This is easily done by using a 
microprocessor to control the switching of the polarization current and the relay(s). 
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Chapter 4 Some Other Considerations 

To resonate or not to resonate 
 

 In the discussion about amplification, we assumed that the sensor be coupled with 
a resonant circuit; either a series circuit for a low-impedance amplifier or a parallel circuit 
for a high-impedance amplifier.  As we shall see below, this confers some advantages to 
the overall system but it has the disadvantage that the value of the resonating capacitor 
will depend on the value of the precession frequency and that, in turn, will depend on the 
local value of the magnetic field.  This means that the correct value for the resonating 
capacitor will depend on where, on the earth, the measurements are to take place.  Over 
the earth, the value of the magnetic field varies between about 4 and 6 microT.  This is a 
considerable range and means that the value of the resonating capacitor will also need to 
be changed as one goes from one region to another.  This is a problem only, of course, if 
the same magnetometer were to be used, say, in South Africa where the field is near the 
lower limit and in North America where it is near the upper limit.  For most users, this is 
not a significant problem but it does mean that the magnetometer must be ‘tuned’ for the 
region where it is to be used. 

 
The advantage of the resonating capacitor is that is provides some free, noiseless 

amplification!  Consider the parallel tuned circuit shown below. 
 

 
The circuit shows the sensor as a voltage source (the precession signal), vp, in series 

with the sensor resistance (including the skin effect) and inductance; rs and Ls 
respectively.  There is, in general, a coupling capacitor, Cc, between the sensor and the 
amplifier.  The amplifier is shown as the resonating capacitor, Cr, in parallel with the 
amplifier input resistance, Rin.  The voltage appearing at the input of the amplifier is va.  
We shall analyze this circuit making some simplifying assumptions.  Firstly, the coupling 
capacitor, Cc, is assumed to be much, much larger than the resonating capacitor.  This 
means that its reactance will be much, much lower than that of the resonating capacitor 
and so, for the ac equivalent circuit, it may be regarded as a short circuit.  Secondly, we 
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shall assume that the amplifier input resistance is much larger than the resonating 
capacitor reactance as the precession frequency.  These approximations are usually good 
ones as the coupling capacitor is usually at least ten times larger than the resonating 
capacitor.  The input resistance is typically about 105 Ohms (for the LM394, for example) 
while the resonating capacitor’s reactance at the precession frequency is typically a 
between 103 and 104 Ohms. 

 
With these approximations, it is possible to show that the voltage appearing at the 

amplifier’s input, va, is related to the precession voltage, vp, by the following equation: 
 

pp
s

a Qvv
r
Lv == ω  

 
Q is the ratio of inductive reactance of the sensor to the losses in the sensor and has 
typical values between 10 and 100.  This means that the precession signal has been 
amplified by the factor Q.  Unfortunately, this does not increase the S/N ratio since the 
noise at the precession frequency is also amplified.  The series circuit for a circuit using a 
low-impedance amplifier may be analyzed the same way and gives the same result: the 
S/N is unchanged but the signal is amplified by the value of Q of the sensor. 
 

So, given the fact that you get free amplification, should you always choose to add 
a resonating capacitor?  The answer depends on how marginal the signal is to start with.  
If you have a rather small sensor, the extra free gain is helpful and may compensate for 
some of the low-noise preamplifier noise.  For a large sensor such as those towed behind 
boats in ocean based magnetometry, the signal may already be quite large (several tens or 
hundreds of microV) and so the extra gain is not necessary and the fact that the 
magnetometer has to be tuned for different locations may be a nuisance. 
 
Relay-less polarization 

 
The presence of a relay in the instrument is always a problem.  Relays have iron 

cores and so perturb the values of the local magnetic field.  This is not a problem with a 
shipboard magnetometer towing the sensor at some distance behind the ship but it is a 
problem with hand-held magnetometers.  However, in addition, a relay is an electro-
mechanical device and so is prone to mechanical failure, dirty contacts, etc.  If, the relay 
is switched ‘hot’ (i.e., the polarizing voltage is always present at the relay contacts), there 
will be arcing when the relay is switched off and this will certainly dirty the contacts very 
rapidly.  Since the desired precession signal is only of the order of microV, any dirt on 
the contacts will add unnecessary noise to the signal.  Finally, relays are normally rated to 
operate for several hundred thousand closures.  However, the relay in a shipboard 
magnetometer may be switching once per second while it is operating and since there are 
3600 seconds in an hour so it may not take long to get to the manufacturer’s rated 
lifetime. 

 
There are semiconductor devices which are called HEXFET’s which can act as 

switches and so may be used to replace the relay.  They are MOSFET’s  in which the gate 
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is insulated from the conducting channel.  They are designed to be non-linear and have 
very low gate-source turn-on voltages and very low on-resistance.  Typically, they can be 
turned on and off by 5V logic level signals and have ON resistances of a fraction of an 
Ohm and OFF resistances of several megOhms. 

 
One can imagine a simple circuit for switching the polarizing current to a sensor 

and then switching the precession voltage to an amplifier.  Consider the following circuit 
diagram.  I have shown the HEXFET’s as if they were simple switches. 

 
To polarize the sensor, switch S1 is closed and, to isolate the sensor from the 

amplifier during the polarization, S2 is opened and S3 is closed.  
 

 
 
To connect the sensor to the amplifier after polarization, S1 is opened, S2 is closed 

and S3 is opened. 
 
All three of the switches can be replaced by HEXFET’s (specifically N-channel)  

and the opening and closing of the switches is done by applying logic-level voltages to 
their gates.  Since the voltage at the junction of S1, S2 and the sensor will go up to the 
breakdown voltage of S1 (which might be ~100V) when it is opened, it is important that 
S2 not break down at this voltage – it must have a high rating than S1. 

 
This circuit has one problem and that is that S1, when opened has a leakage current 

which flows through the sensor.  This will produce a small magnetic field which may be 
significant.  Even worse, the leakage current will be temperature sensitive so it will not 
even be constant during the operation of the magnetometer.  Ideally, we would like the 
DC voltage across the sensor to be zero during the measurement phase of the operation.  
This can be done by adding some other HEXFET switches as shown in the circuit below. 
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In this circuit, two additional HEXFET’s have been added; S4 and S5.  During 

polarization, S4 is closed and S5 is open.  After polarization, S4 is open and S5 is closed.  
This connects the top end of the sensor the ground and so no leakage current flows 
through the sensor.  S4 would be a P-channel HEXFET while S5 would be another N-
channel one. 

 
As a final touch, immediately after polarization stops, because the sensor would 

otherwise ‘ring’ at the self-resonant frequency of the inductor, it is useful to connect yet 
another HEXFET switch to the junction of S1, S2 and the sensor to ground through a 
resistance to act as a squelch of this transient.  The final resulting circuit is shown below. 

 

 
 

Here, S6 is a N-channel HEXFET and the resistance is of the order of 10K. 
 

The controller has a more complicated job in switching these HEXFET’s but it is 
not difficult.  A typical sequence might be as follows: 
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1. turn on S3 and turn off S2 and S5 – this isolates the amplifier from the rest of the 
circuit, 

2. wait a few mS, 
3. turn on S1, S4 and S6 – this turns on the polarization current, 
4. wait for the polarization time, 
5. turn off S4 and S1, 
6. wait about 10 mS to let the ringing die down, 
7. turn on S5 and turn off S6, 
8. wait a mS or two and then turn on S2 and turn off S3, 
9. wait another 10 or 20 mS for amplifier transients to die away and then start the 

measurement of the period. 
 
There is one minor complication with this technique and that is that the 

microprocessor logic signals appear on the gates of the HEXFET’s and will contain some 
microprocessor noise which may be capacitively coupled into the input of the low-noise 
preamplifier.  If the microprocessor operates at 10 MHz, for example, there will be some 
10 MHz noise on the logic output lines.  However, this can be eliminated with a low-pass 
filter on these logic lines going to the gates of the HEXFET’s.  I have found that two or 
three sections of RC filter, each of a series 470 Ohm resistor and a 0.1 microF shunt 
capacitor to ground are sufficient to completely eliminate the microprocessor noise.  This 
filter will cause a delay of approximately 0.5 mS between when the logic gate is put high 
or low and the corresponding HEXFET is turned on or off for each filter section; if you 
use three sections, the total delay will be about 1.5 mS.  This is not a problem as long as 
you don’t want to switch the gates more rapidly than this time delay; which is the case for 
the sequence of operations stated above. 

 
The photo below shows a complete microprocessor based PPM using HEXFET 

switching.  This particular board is a first prototype; it is  
 

 
 
very approximately 5cm by 8 cm in size and uses mainly surface-mount components.  
The brown connector on the left side connects to the sensor.  The top connector on the 
right side connects to the battery and the lower one is the RS-232 interface to the outside 
world.  The program allows one to set parameters like the polarization time, number of 
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cycles of the precession signal to count, etc.  The PPM can be operated in either a 
demand mode where each measurement is initiated by an external command or in an 
automatic mode where the measurements are made one after another as rapidly as 
possible.  The board was laid out in such a way as to keep the low-level amplifier circuits 
as far away as possible from the digital and polarization circuitry. 

 
 

Digital Signal Processing 
 

The discussion in previous sections assumed that the method of determining 
precession frequency was to measure the time taken for a number of cycles of the 
precession signal.  In this method, the precession signal is essentially squared and 
counted.  The principal disadvantage of this method is that noise spikes due to ancillary 
circuits may cause errors in the count.  An error of one count will give a very large error 
in the calculated magnetic field. 

 
In a sense, this method throws away a lot of information.  The precession signal is 

an exponentially decaying sine-wave plus noise and yet the method essentially just looks 
for and counts zero-crossings.  All the amplitude information of the signal is not used. 

 
It is possible to employ other mathematical techniques to determine precession 

frequency with the necessary precision.  Basically, the amplified precession signal is 
digitized at a high rate (typically at least 10 times the precession frequency) and the 
resulting time-sampled waveform then analyzed.  Modern personal computers are 
powerful enough that these mathematical techniques may be done in a time 
approximately equal to the polarization time.  So, for example, using a sensor filled with 
kerosene, one can polarize for half a second, collect the data for another half-second and 
analyze during the next polarization.  The result is one complete magnetic field 
measurement every second. 

 
What are the mathematical techniques?  For a starter, simple Fourier analysis is not 

going to be good enough.  If you sample a waveform with N samples over a time period, 
T, you will get a spectrum with a resolution of 1/T Hz.  It does not matter how many 
samples are taken!  So if we were to sample for half a second, we could derive a 
spectrum with a resolution of 2 Hz which would give an uncertainty in magnetic field 
about 50 nT.  To get a resolution of 1/25 Hz (in order to get a magnetic field accurate to 
about 1 nT), you would have to sample the waveform over 25 seconds and this is clearly 
too slow and the signal would have decayed significantly in 25 seconds. 

 
The best mathematical technique is going to be some version of a ‘best fit’ 

algorithm.  This technique uses the fact that you have some a priori knowledge of the 
signal.  In the case of the precession signal, you know the voltage is going to conform to 
the equation: 

 
noiseEDtBeAv Ct +++= − )sin(  
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It is an equation with five unknowns and so it can, in principle be solved by a least-square 
best-fit algorithm.  Indeed, the situation is not even that bad because you have a priori 
knowledge of some of the parameters already.  For example, C is going to be a constant 
from one measurement to another; it just depends on the spin-spin relaxation time and so 
can be measured for any given sensor just once and then used in all subsequent 
calculations.  Similarly, B is going to be roughly constant for each successive 
measurement and so the value for it can be constrained to be within certain limits.  
Calculating the average of the samples will give an approximate value for A. 
 

One possible method of analysis is, then, to just take an average of the signal to get 
a value for A and to then subtract this from the signal.  This can be done very quickly.  

Then, the resulting numbers can be multiplied by Cte
B
1  to give a simplified equation of 

form: 
 

erroraveragenoiseEDtv _)sin(' +++=  
 

where average_error is the DC offset error due to our crude method for determining A. 
Now we need only solve for D, E and the average_error;  a best-fit analysis problem with 
just three variables.  Best-fit algorithms require some initial estimate of the variable 
before starting.  In the case of the above equation, we usually have a pretty good idea of 
the approximate value of the precession frequency.  Indeed, if you are prospecting either 
on land or over the ocean, you are likely to already have a GPS system to determine 
where you are and, knowing your location, you can easily calculate what the local 
unperturbed magnetic field magnitude is.  There are a number of programs to calculate B 
at any location on the earth’s surface.  E is totally unknown and so is the average_error .  
Nevertheless, most modern lap-top computers are fast enough to do this sort of analysis 
and, if the best-fit is defined as a correlation to a sine wave of arbitrary frequency and 
phase, the errors can be made very small. 
 

I have not tried this technique myself but have done some computer simulations 
which are encouraging.  This suggests that a complete PPM might be made by having just 
a  fast A/D converter in the magnetometer and sending these digitized sample to a lap-top 
computer which does the subsequent analysis.  USB interfaces are fast enough that 
transfer time can be made small enough.  Alternatively, the precession signal can be put 
directly into the lap-top audio port and digitized by the lap-top’s own A/D converter and 
subsequently analyzed. 

 
Finally, there are specialized microprocessors called DSP’s (digital signal 

processors) which are specially designed for this type of analysis and they may be built 
into a complete, self-contained, instrument to measure precession frequency with the 
required accuracy. 

 
Other interference 
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 The sensor may act as a radio receiver, especially if it is not toroidal.  Almost 
everywhere on the surface of the earth, there are radio stations broadcasting in the HF 
bands and the induced voltages in a solenoidal sensor may be hundreds of microV in 
amplitude and even, in some locations, several mV.  Because the low-noise preamplifier 
is biased at a very low current, it may be driven non-linear by these radio signals and 
hence demodulate them.  Because the demodulated audio is in the same range as the 
desired signal, this can cause a problem. 

 
 The solution is to put a low-pass filter at the input of the pre-amplifier to reduce 

the amplitude of these signals.  Even as simple a filter as a small value capacitor (for 
example, 1000 pF) across the sensor terminals may be enough to do this.  For sensors 
being towed in the ocean, this is not as severe a problem because salt water attenuates 
signals in the HF region very effectively.
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Appendix A     The Larmor Equation 

 

 

 

Consider a proton with magnetic moment, µ and angular momentum, L, oriented in 
an external magnetic field as shown above.  µ and L are in the x-z plane at an angle of α 
degrees from the –z direction..  The external magnetic field, B, is in the minus z-direction 
so the torque, T, resulting from the interaction between the proton magnetic moment and 
the external magnetic field is in the plus y-direction since: 

 

This is a vector cross product and all the quantities are vectors in this equation. 

Newton’s third law, for angular quantities, is: 

 

In this case, we know that, because the torque is always perpendicular to the angular 
momentum vector, the additional change in angular momentum is always perpendicular 
to the existing angular momentum.  The resultant is therefore constant in amplitude (and 

BT ×= µ

dt
dLT =

xy
z

L

µ

B

T

α degrees in
the x-z plane
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equal to the original magnitude) but there is a constant change in direction; in other 
words, the proton will precess at a constant rate.  In this geometry, the time-varying 
angular momentum vector will always lie in the xy-plane.  Therefore, we can write the 
angular momentum vector in two dimensions as: 

 

     L=Lxy{ icos(ωt) + jsin(ωt)} + kLz 
 
where i , j and k are unit vectors in the x, y and z-directions respectively.  Lxy (not bold 
faced) is the magnitude of L in the x-y plane and Lz is the magnitude of L in the z-
direction – in this case, Lz happens to be negative but the following analysis is 
independent of whether it is positive or negative.  ω is the angular rate of precession in 
radians per second. 
 

Since µ = γpL, we may write µ as: 
 
     µ = γpLxy{icos(ωt) + jsin(ωt)} + kγpLz 
 
and then, the torque, T, becomes: 
 

 i       j     k 
 

     T   =      γpLxycos(ωt)   γpLxysin(ωt)     γpLz 
 
  0      0    -B 
 
 
 
which is: 
 
     T = i{ - γpLxyBsin(ωt)} + j{ γpLxyBcos(ωt)} 

 

Now, from the equation for L, we can differentiate with respect to t to get (γpLz is 
constant and so its differential with respect to t is zero): 

 

      dL/dt = i{ -ωLxy sin(ωt)} + j{ ωLxy cos(ωt)} 

Therefore, since  

 
then 
                 ω=γpB 

dt
dLT =
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which is the Larmor equation.  Note that the result is independent of the orientation of L 
with respect to B provided that Lxy is not zero.  If Lxy is zero (i.e., if L is parallel to B), 
then there is no torque and hence, no precession. 
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Appendix B     The Polarization Cycle Decay 

 

Consider the figure shown below.  Here are two possible circuits for polarizing the 
sensor and the equivalent circuit after the HexFET is off or the switch has been opened 
(respectively). 

 

 

In this figure, Vb is either the breakdown voltage of the HexFET or the voltage of the 
Zener diode.  The equation for I in the equivalent circuit is: 

 

where R is the dc resistance of the sensor, and L is its inductance.  Given the initial 
condition that the current is I0 at t=0, just prior to the instant that the switch is opened (or 
the HexFET is turned off), the solution for I is then: 

 

The graph of this equation is shown below: 
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Here, Ts is the total time for the current to go from Is to 0.  Using the same notation as 
in Chapter 3, the time at which I goes to zero is ts.  The equation may be solved to find 
this time (at which I goes to zero) giving: 

 

In the example given in Chapter 3, I0 was 1.6 A, R was 7.4 Ohms, Vb was 100 V and 
L was 20 mH.  Substituting those numbers into this equation gives a calculated value for 
ts of 0.3 mS.  The value observed on an oscilloscope was 0.2 mS; in good agreement with 
the calculated value. 

In order to calculate Ts, we need to find the slope of the equation for I as a function of 
time.  This is given by: 
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and, using the value for ts which was obtained in the previous example, we find that dI/dt 
in the vicinity of where the current goes to zero is about 5,000 A/s. Using this value, Ts 
turns out to be ~4 µS instead of the previously estimated ~2.5 µS (in Chapter 3).  
Obviously, the much simpler analysis in Chapter 3 is sufficiently good for this sensor 
and polarization circuit; we do not need to do the more extensive analysis derived here. 

These equations are useful however, for those cases where Vb is very small.  For 
example, some published circuits for PPM’s just show a reversed diode across the sensor 
(sometimes, a few in series).  That is, in the second circuit at the beginning of this 
Appendix, the Zener diode is replaced with a short circuit.  In this case, Vb might be as 
low as just one diode voltage drop (~1 V at the typical currents of a ~1 to ~10 A) and, ts 
may be several mS.  Therefore Ts is also very long – perhaps too long!   

You may use these equations to do the appropriate calculations for the circuit you 
use. 
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Appendix C      Relative Sensitivity of some Common Fluids 

 

 
Substance Molecular 

Weight 
Number of H 
atoms per 
molecule 

Density (kg/cubic 
metre) 

Chi relative to 
water 

Benzene 78 6 876.5 0.607 

Methanol 32 4 791.4 0.890 

Ethanol 46 6 789.3 0.927 

Isopropanol 60 8 780.9 0.937 
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Appendix D      Relative Accuracy versus Achieved Signal-to-Noise Ratio 

 

In the table below, it is assumed that the measurement of the frequency takes 
place over ½ second and that the frequency is close to 2130 Hz (50,000 nT). 

 

S/N 
Relative 

Accuracy 

Error in 50,000 nT 

(nT) 

1 9.2E-5 4.6 

2 5.1E-5 2.5 

5 2.1E-5 1.1 

10 1.05E-5 0.5 

20 5.28E-6 0.26 

50 2.11E-6 0.11 

100 1.06E-6 0.05 

200 5.28E-7 0.03 

 

Note:  In a digital counter, you can expect to get much larger errors for low S/N ratios 
because noise may cause excess transitions which will be counted as complete cycles. 
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